162 research outputs found

    Recent Ice Trends in Swiss Mountain Lakes: 20-year Analysis of MODIS Imagery

    Full text link
    Depleting lake ice is a climate change indicator, just like sea-level rise or glacial retreat. Monitoring Lake Ice Phenology (LIP) is useful because long-term freezing and thawing patterns serve as sentinels to understand regional and global climate change. We report a study for the Oberengadin region of Switzerland, where several small- and medium-sized mountain lakes are located. We observe the LIP events, such as freeze-up, break-up and ice cover duration, across two decades (2000–2020) from optical satellite images. We analyse the time series of MODIS imagery by estimating spatially resolved maps of lake ice for these Alpine lakes with supervised machine learning. To train the classifier we rely on reference data annotated manually based on webcam images. From the ice maps, we derive long-term LIP trends. Since the webcam data are only available for two winters, we cross-check our results against the operational MODIS and VIIRS snow products. We find a change in complete freeze duration of −0.76 and −0.89 days per annum for lakes Sils and Silvaplana, respectively. Furthermore, we observe plausible correlations of the LIP trends with climate data measured at nearby meteorological stations. We notice that mean winter air temperature has a negative correlation with the freeze duration and break-up events and a positive correlation with the freeze-up events. Additionally, we observe a strong negative correlation of sunshine during the winter months with the freeze duration and break-up events

    Recent Ice Trends in Swiss Mountain Lakes: 20-year Analysis of MODIS Imagery

    Full text link
    Depleting lake ice is a climate change indicator, just like sea-level rise or glacial retreat. Monitoring Lake Ice Phenology (LIP) is useful because long-term freezing and thawing patterns serve as sentinels to understand regional and global climate change. We report a study for the Oberengadin region of Switzerland, where several small- and medium-sized mountain lakes are located. We observe the LIP events, such as freeze-up, break-up and ice cover duration, across two decades (2000-2020) from optical satellite images. We analyse the time series of MODIS imagery by estimating spatially resolved maps of lake ice for these Alpine lakes with supervised machine learning. To train the classifier we rely on reference data annotated manually based on webcam images. From the ice maps, we derive long-term LIP trends. Since the webcam data are only available for two winters, we cross-check our results against the operational MODIS and VIIRS snow products. We find a change in complete freeze duration of -0.76 and -0.89 days per annum for lakes Sils and Silvaplana, respectively. Furthermore, we observe plausible correlations of the LIP trends with climate data measured at nearby meteorological stations. We notice that mean winter air temperature has a negative correlation with the freeze duration and break-up events and a positive correlation with the freeze-up events. Additionally, we observe a strong negative correlation of sunshine during the winter months with the freeze duration and break-up events.Comment: accepted for PFG Journal of Photogrammetry, Remote Sensing and Geoinformation Scienc

    Learning a Joint Embedding of Multiple Satellite Sensors: A Case Study for Lake Ice Monitoring

    Full text link
    Fusing satellite imagery acquired with different sensors has been a long-standing challenge of Earth observation, particularly across different modalities such as optical and synthetic aperture radar (SAR) images. Here, we explore the joint analysis of imagery from different sensors in the light of representation learning: we propose to learn a joint embedding of multiple satellite sensors within a deep neural network. Our application problem is the monitoring of lake ice on Alpine lakes. To reach the temporal resolution requirement of the Swiss Global Climate Observing System (GCOS) office, we combine three image sources: Sentinel-1 SAR (S1-SAR), Terra moderate resolution imaging spectroradiometer (MODIS), and Suomi-NPP visible infrared imaging radiometer suite (VIIRS). The large gaps between the optical and SAR domains and between the sensor resolutions make this a challenging instance of the sensor fusion problem. Our approach can be classified as a late fusion that is learned in a data-driven manner. The proposed network architecture has separate encoding branches for each image sensor, which feed into a single latent embedding, i.e., a common feature representation shared by all inputs, such that subsequent processing steps deliver comparable output irrespective of which sort of input image was used. By fusing satellite data, we map lake ice at a temporal resolution of 91% [respectively, mean per-class Intersection-over-Union (mIoU) scores >60%] and generalizes well across different lakes and winters. Moreover, it sets a new state-of-the-art for determining the important ice-on and ice-off dates for the target lakes, in many cases meeting the GCOS requirement

    Learning a Joint Embedding of Multiple Satellite Sensors: A Case Study for Lake Ice Monitoring

    Full text link
    Fusing satellite imagery acquired with different sensors has been a long-standing challenge of Earth observation, particularly across different modalities such as optical and Synthetic Aperture Radar (SAR) images. Here, we explore the joint analysis of imagery from different sensors in the light of representation learning: we propose to learn a joint embedding of multiple satellite sensors within a deep neural network. Our application problem is the monitoring of lake ice on Alpine lakes. To reach the temporal resolution requirement of the Swiss Global Climate Observing System (GCOS) office, we combine three image sources: Sentinel-1 SAR (S1-SAR), Terra MODIS, and Suomi-NPP VIIRS. The large gaps between the optical and SAR domains and between the sensor resolutions make this a challenging instance of the sensor fusion problem. Our approach can be classified as a late fusion that is learned in a data-driven manner. The proposed network architecture has separate encoding branches for each image sensor, which feed into a single latent embedding. I.e., a common feature representation shared by all inputs, such that subsequent processing steps deliver comparable output irrespective of which sort of input image was used. By fusing satellite data, we map lake ice at a temporal resolution of < 1.5 days. The network produces spatially explicit lake ice maps with pixel-wise accuracies > 91% (respectively, mIoU scores > 60%) and generalises well across different lakes and winters. Moreover, it sets a new state-of-the-art for determining the important ice-on and ice-off dates for the target lakes, in many cases meeting the GCOS requirement

    On The Performance Of Photogrammetric Scanners

    No full text
    Scanners are necessary for retrieving digital information from analogue imagery. This paper discusses their geometric and radiometric performance, as input devices for softcopy photogrammetric systems. A classification and overview of scanners, their major technical characteristics, and their development over the last years are given. Some important scanner aspects, including illumination, dynamic range and quantisation bits, colour scanning, use of linear versus area CCDs, subsampling methods, scanning throughput and speed, and geometric and radiometric calibrations are presented. Thereby, different technological alternatives, their advantages and disadvantages are discussed

    Verfahren und Möglichkeiten der modernen Photogrammetry zur DTM Generierung

    No full text
    • …
    corecore